1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
//! Vectors of raw packet data.
//! All of these types are Connection-level, meaning they are delivered on
//! connection termination.
//!
//! There are two types of packet lists: those containing Mbufs (`Zc` prefix)
//! and those containing raw bytes (as vectors).
//!
//! For the former: Mbufs are shared across these lists via DPDK reference counting,
//! so requesting lists of packets does not require copying. However, it may
//! introduce additional mempool requirements, as Mbufs must be kept in memory
//! for the duration of the connection. This is often particularly infeasible for
//! UDP connections, which must stay in memory until a timeout is reached.
//! In such cases, users may wish to use the non-`Zc` variants.
//!
//! For TCP connections, the non-`Zc` variants wait to clone data until the
//! first few packets have passed or until the packet data is requested.
//! After the first `PKTS_START_CLONE` packets, it is likely that some traffic has
//! been filtered out by the framework (e.g., TLS handshake has been parsed).
//! This is a middle ground between memory usage and compute performance.
//!
//! For UDP connections, this is not feasible without unacceptable mempool utilization;
//! many UDP connections are short-lived, and UDP connections are not "closed" until
//! a timeout period has passed.
use crate::PacketList;
use retina_core::{protocols::packet::tcp::TCP_PROTOCOL, L4Pdu, Mbuf};
/// Pasic raw packet bytes.
#[derive(Debug)]
pub struct PktData {
pub data: Vec<u8>,
}
impl PktData {
pub fn new(mbuf: &Mbuf) -> Self {
Self {
data: mbuf.data().to_vec(),
}
}
}
/// Number of Mbufs to cache before starting to clone data for
/// TCP connections only. If PKTS_START_CLONE is not reached, the
/// data is converted to Vec<u8> on first access.
const PKTS_START_CLONE: usize = 5;
pub trait PktStream {
fn in_mbufs_own(&mut self) -> Vec<Mbuf>;
fn in_mbufs_ref(&mut self) -> &mut Vec<Mbuf>;
fn out_packets(&mut self) -> &mut Vec<PktData>;
fn drain_mbufs(&mut self) {
let mut in_mbufs = self.in_mbufs_own();
for mbuf in in_mbufs.drain(..) {
self.out_packets().push(PktData::new(&mbuf));
}
}
fn packets(&mut self) -> &Vec<PktData> {
if self.in_mbufs_ref().is_empty() {
return self.out_packets();
}
self.drain_mbufs();
self.out_packets()
}
fn push(&mut self, pdu: &L4Pdu) {
if pdu.ctxt.proto == TCP_PROTOCOL && self.in_mbufs_ref().len() < PKTS_START_CLONE {
self.in_mbufs_ref().push(Mbuf::new_ref(&pdu.mbuf));
return;
} else if !self.in_mbufs_ref().is_empty() {
self.drain_mbufs();
}
self.out_packets().push(PktData::new(pdu.mbuf_ref()));
}
}
/// For a connection, the bidirectional stream of packets
/// in the order received by the framework.
#[derive(Debug)]
pub struct BidirPktStream {
/// The raw packet data.
pub packets: Vec<PktData>,
/// The first few packets are stored as Mbufs
/// before data copies begin.
mbufs: Vec<Mbuf>,
}
impl PktStream for BidirPktStream {
fn in_mbufs_own(&mut self) -> Vec<Mbuf> {
std::mem::take(&mut self.mbufs)
}
fn in_mbufs_ref(&mut self) -> &mut Vec<Mbuf> {
&mut self.mbufs
}
fn out_packets(&mut self) -> &mut Vec<PktData> {
&mut self.packets
}
}
impl PacketList for BidirPktStream {
fn new(_first_pkt: &L4Pdu) -> Self {
Self {
packets: Vec::new(),
mbufs: Vec::new(),
}
}
fn track_packet(&mut self, pdu: &L4Pdu, reassembled: bool) {
if !reassembled {
self.push(pdu);
}
}
fn clear(&mut self) {
self.packets.clear();
self.mbufs.clear();
}
}
/// For a connection, an originator's (unidirectional) stream of packets
/// in the order received by the framework. For TCP streams, the
/// "originator" is the endpoint that sends the first SYN. For UDP,
/// it is the endpoint which sends the first-seen packet.
pub struct OrigPktStream {
/// The raw packet data.
pub packets: Vec<PktData>,
/// The first few packets are stored as Mbufs
/// before data copies begin.
mbufs: Vec<Mbuf>,
}
impl PktStream for OrigPktStream {
fn in_mbufs_own(&mut self) -> Vec<Mbuf> {
std::mem::take(&mut self.mbufs)
}
fn in_mbufs_ref(&mut self) -> &mut Vec<Mbuf> {
&mut self.mbufs
}
fn out_packets(&mut self) -> &mut Vec<PktData> {
&mut self.packets
}
}
impl PacketList for OrigPktStream {
fn new(_first_pkt: &L4Pdu) -> Self {
Self {
packets: Vec::new(),
mbufs: Vec::new(),
}
}
fn track_packet(&mut self, pdu: &L4Pdu, reassembled: bool) {
if pdu.dir && !reassembled {
self.push(pdu);
}
}
fn clear(&mut self) {
self.packets.clear();
self.mbufs.clear();
}
}
/// For a connection, a responder's (unidirectional) stream of packets
/// in the order received by the framework. For TCP streams, the
/// "responder" is the endpoint that receives the first SYN and responds
/// with a SYN/ACK. For UDP, it is the endpoint which does not send the
/// first packet.
pub struct RespPktStream {
/// The raw packet data.
pub packets: Vec<PktData>,
/// The first few packets are stored as Mbufs
/// before data copies begin.
mbufs: Vec<Mbuf>,
}
impl PktStream for RespPktStream {
fn in_mbufs_own(&mut self) -> Vec<Mbuf> {
std::mem::take(&mut self.mbufs)
}
fn in_mbufs_ref(&mut self) -> &mut Vec<Mbuf> {
&mut self.mbufs
}
fn out_packets(&mut self) -> &mut Vec<PktData> {
&mut self.packets
}
}
impl PacketList for RespPktStream {
fn new(_first_pkt: &L4Pdu) -> Self {
Self {
packets: Vec::new(),
mbufs: Vec::new(),
}
}
fn track_packet(&mut self, pdu: &L4Pdu, reassembled: bool) {
if !pdu.dir && !reassembled {
self.push(pdu);
}
}
fn clear(&mut self) {
self.packets.clear();
self.mbufs.clear();
}
}
/// For a connection, an originator's (unidirectional) stream of packets
/// in reassembled order. This should be used for TCP only.
pub struct OrigPktsReassembled {
/// The raw packet data.
pub packets: Vec<PktData>,
/// The first few packets are stored as Mbufs
/// before data copies begin.
mbufs: Vec<Mbuf>,
}
impl PktStream for OrigPktsReassembled {
fn in_mbufs_own(&mut self) -> Vec<Mbuf> {
std::mem::take(&mut self.mbufs)
}
fn in_mbufs_ref(&mut self) -> &mut Vec<Mbuf> {
&mut self.mbufs
}
fn out_packets(&mut self) -> &mut Vec<PktData> {
&mut self.packets
}
}
impl PacketList for OrigPktsReassembled {
fn new(_first_pkt: &L4Pdu) -> Self {
Self {
packets: Vec::new(),
mbufs: Vec::new(),
}
}
fn track_packet(&mut self, pdu: &L4Pdu, reassembled: bool) {
if pdu.dir && reassembled {
self.push(pdu);
}
}
fn clear(&mut self) {
self.packets.clear();
self.mbufs.clear();
}
}
/// For a connection, a responder's (unidirectional) stream of packets
/// in reassembled order. This should be used for TCP only.
pub struct RespPktsReassembled {
/// The raw packet data.
pub packets: Vec<PktData>,
/// The first few packets are stored as Mbufs
/// before data copies begin.
mbufs: Vec<Mbuf>,
}
impl PktStream for RespPktsReassembled {
fn in_mbufs_own(&mut self) -> Vec<Mbuf> {
std::mem::take(&mut self.mbufs)
}
fn in_mbufs_ref(&mut self) -> &mut Vec<Mbuf> {
&mut self.mbufs
}
fn out_packets(&mut self) -> &mut Vec<PktData> {
&mut self.packets
}
}
impl PacketList for RespPktsReassembled {
fn new(_first_pkt: &L4Pdu) -> Self {
Self {
packets: Vec::new(),
mbufs: Vec::new(),
}
}
fn track_packet(&mut self, pdu: &L4Pdu, reassembled: bool) {
if !pdu.dir && reassembled {
self.push(pdu);
}
}
fn clear(&mut self) {
self.packets.clear();
self.mbufs.clear();
}
}
/// For a connection, the bidirectional stream of packets
/// in the order received by the framework.
pub struct BidirZcPktStream {
pub packets: Vec<Mbuf>,
}
impl PacketList for BidirZcPktStream {
fn new(_first_pkt: &L4Pdu) -> Self {
Self {
packets: Vec::new(),
}
}
fn track_packet(&mut self, pdu: &L4Pdu, reassembled: bool) {
if !reassembled {
self.packets.push(Mbuf::new_ref(&pdu.mbuf));
}
}
fn clear(&mut self) {
self.packets.clear();
}
}
/// For a connection, an originator's (unidirectional) stream of packets
/// in the order received by the framework. For TCP streams, the
/// "originator" is the endpoint that sends the first SYN. For UDP,
/// it is the endpoint which sends the first-seen packet.
pub struct OrigZcPktStream {
pub packets: Vec<Mbuf>,
}
impl PacketList for OrigZcPktStream {
fn new(_first_pkt: &L4Pdu) -> Self {
Self {
packets: Vec::new(),
}
}
fn track_packet(&mut self, pdu: &L4Pdu, reassembled: bool) {
if !reassembled && pdu.dir {
self.packets.push(Mbuf::new_ref(&pdu.mbuf));
}
}
fn clear(&mut self) {
self.packets.clear();
}
}
/// For a connection, a responder's (unidirectional) stream of packets
/// in the order received by the framework. For TCP streams, the
/// "responder" is the endpoint that receives the first SYN and responds
/// with a SYN/ACK. For UDP, it is the endpoint which does not send the
/// first packet.
pub struct RespZcPktStream {
pub packets: Vec<Mbuf>,
}
impl PacketList for RespZcPktStream {
fn new(_first_pkt: &L4Pdu) -> Self {
// TODO figure out good default capacity
Self {
packets: Vec::new(),
}
}
fn track_packet(&mut self, pdu: &L4Pdu, reassembled: bool) {
if !reassembled && !pdu.dir {
self.packets.push(Mbuf::new_ref(&pdu.mbuf));
}
}
fn clear(&mut self) {
self.packets.clear();
}
}
/// For a connection, an originator's (unidirectional) stream of packets
/// in reassembled order. This should be used for TCP only.
pub struct OrigZcPktsReassembled {
pub packets: Vec<Mbuf>,
}
impl PacketList for OrigZcPktsReassembled {
fn new(_first_pkt: &L4Pdu) -> Self {
Self {
packets: Vec::new(),
}
}
fn track_packet(&mut self, pdu: &L4Pdu, reassembled: bool) {
if reassembled && pdu.dir {
self.packets.push(Mbuf::new_ref(&pdu.mbuf));
}
}
fn clear(&mut self) {
self.packets.clear();
}
}
/// For a connection, a responder's (unidirectional) stream of packets
/// in reassembled order. This should be used for TCP only.
pub struct RespZcPktsReassembled {
pub packets: Vec<Mbuf>,
}
impl PacketList for RespZcPktsReassembled {
fn new(_first_pkt: &L4Pdu) -> Self {
Self {
packets: Vec::new(),
}
}
fn track_packet(&mut self, pdu: &L4Pdu, reassembled: bool) {
if reassembled && !pdu.dir {
self.packets.push(Mbuf::new_ref(&pdu.mbuf));
}
}
fn clear(&mut self) {
self.packets.clear();
}
}