1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
//! A sample connection record that provides various TCP and/or UDP connection
//! information, statistics, and state history. It does not deliver payload data.
use retina_core::conntrack::conn::tcp_conn::reassembly::wrapping_lt;
use retina_core::conntrack::conn_id::FiveTuple;
use retina_core::conntrack::pdu::L4Pdu;
use retina_core::protocols::packet::tcp::{ACK, FIN, RST, SYN};
use super::Tracked;
use serde::ser::{SerializeStruct, Serializer};
use serde::Serialize;
use std::time::{Duration, Instant};
use std::collections::HashMap;
use std::fmt;
use std::net::SocketAddr;
/// Pure SYN
pub(crate) const HIST_SYN: u8 = b'S';
/// Pure SYNACK
pub(crate) const HIST_SYNACK: u8 = b'H';
/// Pure ACK (no payload)
pub(crate) const HIST_ACK: u8 = b'A';
/// Has non-zero payload length
pub(crate) const HIST_DATA: u8 = b'D';
/// Has FIN set
pub(crate) const HIST_FIN: u8 = b'F';
/// Has RST set
pub(crate) const HIST_RST: u8 = b'R';
impl ConnRecord {
/// Returns the client (originator) socket address.
#[inline]
pub fn client(&self) -> SocketAddr {
self.five_tuple.orig
}
/// Returns the server (responder) socket address.
#[inline]
pub fn server(&self) -> SocketAddr {
self.five_tuple.resp
}
/// Returns the total number of packets observed in the connection.
#[inline]
pub fn total_pkts(&self) -> u64 {
self.orig.nb_pkts + self.resp.nb_pkts
}
/// Returns the total number of payload bytes observed, excluding those from malformed packets.
#[inline]
pub fn total_bytes(&self) -> u64 {
self.orig.nb_bytes + self.resp.nb_bytes
}
/// Returns the connection history.
#[inline]
pub fn history(&self) -> String {
String::from_utf8_lossy(&self.history).into_owned()
}
/// Returns te duration of the connection.
///
/// ## Remarks
/// This does not represent the actual duration of the connection in offline analysis. It
/// approximates the elapsed time between observation of the first and last observed packet in
/// the connection.
#[inline]
pub fn duration(&self) -> Duration {
if self.orig.nb_pkts + self.resp.nb_pkts == 1 {
return Duration::default();
}
self.last_seen_ts - self.first_seen_ts
}
/// The duration (approximate) between the first and second packets.
#[inline]
pub fn time_to_second_packet(&self) -> Duration {
if self.orig.nb_pkts + self.resp.nb_pkts == 1 {
return Duration::default();
}
self.second_seen_ts - self.first_seen_ts
}
}
impl Serialize for ConnRecord {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut state = serializer.serialize_struct("ConnRecord", 6)?;
state.serialize_field("five_tuple", &self.five_tuple)?;
state.serialize_field("duration", &self.duration())?;
state.serialize_field("time_to_second_pkt", &self.time_to_second_packet())?;
state.serialize_field("max_inactivity", &self.max_inactivity)?;
state.serialize_field("history", &self.history())?;
state.serialize_field("orig", &self.orig)?;
state.serialize_field("resp", &self.resp)?;
state.end()
}
}
impl fmt::Display for ConnRecord {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}: {}", self.five_tuple, self.history())?;
Ok(())
}
}
/// Tracks a connection record throughout its lifetime.
///
/// ## Note
/// Internal connection state is an associated type of a `pub` trait, and therefore must also be
/// public. Documentation is hidden by default to avoid confusing users.
#[derive(Debug)]
pub struct ConnRecord {
/// The connection 5-tuple.
pub five_tuple: FiveTuple,
/// Timestamp of the first packet.
///
/// ## Remarks
/// This represents the time Retina observed the first packet in the connection, and does not
/// reflect timestamps read from a packet capture in offline analysis.
pub first_seen_ts: Instant,
/// Timestamp of the second packet (approximate).
pub second_seen_ts: Instant,
/// Timestamp of the last packet (approximate).
pub last_seen_ts: Instant,
/// Maximum duration of inactivity (the maximum time between observed segments).
pub max_inactivity: Duration,
// Connection history.
///
/// This represents a summary of the connection history in the order the packets were observed,
/// with letters encoded as a vector of bytes. This is a simplified version of [state history in
/// Zeek](https://docs.zeek.org/en/v5.0.0/scripts/base/protocols/conn/main.zeek.html), and the
/// meanings of each letter are similar: If the event comes from the originator, the letter is
/// uppercase; if the event comes from the responder, the letter is lowercase.
/// - S: a pure SYN with only the SYN bit set (may have payload)
/// - H: a pure SYNACK with only the SYN and ACK bits set (may have payload)
/// - A: a pure ACK with only the ACK bit set and no payload
/// - D: segment contains non-zero payload length
/// - F: the segment has the FIN bit set (may have other flags and/or payload)
/// - R: segment has the RST bit set (may have other flags and/or payload)
///
/// Each letter is recorded a maximum of once in either direction.
pub history: Vec<u8>,
/// Originator flow.
pub orig: Flow,
/// Responder flow.
pub resp: Flow,
}
#[inline]
pub(crate) fn update_history(history: &mut Vec<u8>, segment: &L4Pdu, mask: u8) {
fn insert(history: &mut Vec<u8>, event: u8) {
if !history.contains(&event) {
history.push(event);
}
}
if segment.flags() == SYN {
insert(history, HIST_SYN ^ mask);
} else if segment.flags() == (SYN | ACK) {
insert(history, HIST_SYNACK ^ mask);
} else if segment.flags() == ACK && segment.length() == 0 {
insert(history, HIST_ACK ^ mask);
}
if segment.flags() & FIN != 0 {
insert(history, HIST_FIN ^ mask);
}
if segment.flags() & RST != 0 {
insert(history, HIST_RST ^ mask);
}
if segment.length() > 0 {
insert(history, HIST_DATA ^ mask);
}
}
impl ConnRecord {
#[inline]
fn update_data(&mut self, segment: &L4Pdu) {
let now = Instant::now();
let inactivity = now - self.last_seen_ts;
if inactivity > self.max_inactivity {
self.max_inactivity = inactivity;
}
self.last_seen_ts = now;
if segment.dir {
update_history(&mut self.history, segment, 0x0);
// TODO need a separate `update` for `update_owned`
// Cloning segment is a non-starter.
self.orig.insert_segment(segment);
} else {
update_history(&mut self.history, segment, 0x20);
self.resp.insert_segment(segment);
}
if self.orig.nb_pkts + self.resp.nb_pkts == 2 {
self.second_seen_ts = now;
}
}
}
impl Tracked for ConnRecord {
fn new(first_pkt: &L4Pdu) -> Self {
let five_tuple = FiveTuple::from_ctxt(first_pkt.ctxt);
let now = Instant::now();
Self {
five_tuple,
first_seen_ts: now,
second_seen_ts: now,
last_seen_ts: now,
max_inactivity: Duration::default(),
history: Vec::with_capacity(16),
orig: Flow::new(),
resp: Flow::new(),
}
}
// Clear the more memory-intensive data structures
fn clear(&mut self) {
self.orig.chunks = Vec::with_capacity(0);
self.orig.gaps = HashMap::with_capacity(0);
self.resp.chunks = Vec::with_capacity(0);
self.resp.gaps = HashMap::with_capacity(0);
self.history = Vec::with_capacity(0);
}
fn update(&mut self, pdu: &L4Pdu, reassembled: bool) {
if !reassembled {
self.update_data(pdu);
}
}
fn stream_protocols() -> Vec<&'static str> {
vec![]
}
}
/// Default value for maximum chunk capacity.
const DEFAULT_CHUNK_CAPACITY: usize = 100;
/// A uni-directional flow.
#[derive(Debug, Clone, Serialize)]
pub struct Flow {
/// Number of packets seen for this flow, including malformed and late start segments.
///
/// - Malformed segments are defined as those that have a payload offset (start of the payload,
/// as computed from the header length field) beyond the end of the packet buffer, or the end
/// of the payload exceeds the end of the packet buffer.
/// - Late start segments are those that arrive after the first packet seen in the flow, but
/// have an earlier sequence number. Only applies to TCP flows.
pub nb_pkts: u64,
/// Number of malformed packets.
pub nb_malformed_pkts: u64,
/// Number of late start packets.
pub nb_late_start_pkts: u64,
/// Number of payload bytes observed in the flow. Does not include bytes from malformed
/// segments.
pub nb_bytes: u64,
/// Maximum number of simultaneous content gaps.
///
/// A content gap is a "hole" in the TCP sequence number, indicated re-ordered or missing
/// packets. Only applies to TCP flows.
pub max_simult_gaps: u64,
/// Starting sequence number of the first byte in the first payload (ISN + 1). Only applies to
/// TCP flows, and is set to `0` for UDP.
pub data_start: u32,
/// Maximum chunk capacity (the maximum number of simultaneous gaps + 1). Only applies to TCP
/// flows. Used to prevent resizing `chunks` vector.
pub capacity: usize,
/// The set of non-overlapping content intervals. Only applies to TCP flows.
pub chunks: Vec<Chunk>,
/// Maps relative sequence number of a content gap to the number of packets observed before it
/// is filled. Only applies to TCP flows.
pub gaps: HashMap<u32, u64>,
}
impl Flow {
fn new() -> Self {
Flow {
nb_pkts: 0,
nb_malformed_pkts: 0,
nb_late_start_pkts: 0,
nb_bytes: 0,
max_simult_gaps: 0,
data_start: 0,
capacity: DEFAULT_CHUNK_CAPACITY,
chunks: Vec::with_capacity(DEFAULT_CHUNK_CAPACITY),
gaps: HashMap::new(),
}
}
#[inline]
fn insert_segment(&mut self, segment: &L4Pdu) {
self.nb_pkts += 1;
if segment.offset() > segment.mbuf.data_len()
|| (segment.offset() + segment.length()) > segment.mbuf.data_len()
{
self.nb_malformed_pkts += 1;
return;
}
self.nb_bytes += segment.length() as u64;
let seq_no = if segment.flags() & SYN != 0 {
segment.seq_no().wrapping_add(1)
} else {
segment.seq_no()
};
if self.chunks.is_empty() {
self.data_start = seq_no;
}
if wrapping_lt(seq_no, self.data_start) {
self.nb_late_start_pkts += 1;
return;
}
if self.chunks.len() < self.capacity {
let seg_start = seq_no.wrapping_sub(self.data_start);
let seg_end = seg_start + segment.length() as u32;
self.merge_chunk(Chunk(seg_start, seg_end));
}
}
/// Insert `chunk` into flow, merging intervals as necessary. Flow `chunks` are a sorted set of
/// non-overlapping intervals.
#[inline]
fn merge_chunk(&mut self, chunk: Chunk) {
let mut start = chunk.0;
let mut end = chunk.1;
let mut result = vec![];
let mut inserted = false;
for chunk in self.chunks.iter() {
if inserted || start > chunk.1 {
result.push(*chunk);
} else if end < chunk.0 {
inserted = true;
result.push(Chunk(start, end));
result.push(*chunk);
} else {
start = std::cmp::min(start, chunk.0);
end = std::cmp::max(end, chunk.1);
}
}
if !inserted {
result.push(Chunk(start, end));
}
for chunk in result[..result.len() - 1].iter() {
*self.gaps.entry(chunk.1).or_insert(0) += 1;
}
if result.len().saturating_sub(1) as u64 > self.max_simult_gaps {
self.max_simult_gaps += 1;
}
self.chunks = result;
}
/// Returns the number of content gaps at the connection end.
///
/// This is not the total number of content gaps ever observed, rather, it represents the total
/// number of gaps remaining in the final state of the connection.
#[inline]
pub fn content_gaps(&self) -> u64 {
self.chunks.len().saturating_sub(1) as u64
}
/// Number of bytes missed in content gaps at connection end.
///
/// This is not the total size of all content gaps ever observed, rather, it represents the
/// total number of missing bytes in the final state of the connection.
#[inline]
pub fn missed_bytes(&self) -> u64 {
self.chunks.windows(2).map(|w| w[1].0 - w[0].1).sum::<u32>() as u64
}
/// Returns the mean number of packet arrivals before a content gap is filled, or `0` if there
/// were no gaps.
#[inline]
pub fn mean_pkts_to_fill(&self) -> Option<f64> {
if self.gaps.is_empty() {
return None;
}
let mut sum = 0;
for val in self.gaps.values() {
sum += *val;
}
Some(sum as f64 / self.gaps.len() as f64)
}
/// Returns the median number of packet arrivals before a content gap is filled, or `0` if there
/// were no gaps.
#[inline]
pub fn median_pkts_to_fill(&self) -> Option<u64> {
if self.gaps.is_empty() {
return None;
}
let mut values = self.gaps.values().collect::<Vec<_>>();
values.sort();
let mid = values.len() / 2;
Some(*values[mid])
}
}
/// Start (inclusive) and end (exclusive) interval of contiguous TCP payload bytes.
#[derive(Debug, Default, Clone, Copy, Eq, PartialEq, Serialize)]
pub struct Chunk(u32, u32);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn core_merge_chunk_fill_single() {
let mut flow = Flow::new();
flow.chunks = vec![Chunk(0, 3), Chunk(4, 5)];
flow.merge_chunk(Chunk(3, 4));
assert_eq!(flow.chunks, vec![Chunk(0, 5)]);
}
#[test]
fn core_merge_chunk_fill_multiple() {
let mut flow = Flow::new();
flow.chunks = vec![Chunk(0, 3), Chunk(4, 5), Chunk(8, 10)];
flow.merge_chunk(Chunk(2, 12));
assert_eq!(flow.chunks, vec![Chunk(0, 12)]);
}
#[test]
fn core_merge_chunk_create_hole() {
let mut flow = Flow::new();
flow.chunks = vec![Chunk(0, 3), Chunk(8, 10)];
flow.merge_chunk(Chunk(4, 5));
assert_eq!(flow.chunks, vec![Chunk(0, 3), Chunk(4, 5), Chunk(8, 10)]);
}
#[test]
fn core_merge_chunk_fill_overlap() {
let mut flow = Flow::new();
flow.chunks = vec![Chunk(0, 3), Chunk(8, 10)];
flow.merge_chunk(Chunk(5, 9));
assert_eq!(flow.chunks, vec![Chunk(0, 3), Chunk(5, 10)]);
}
#[test]
fn core_merge_chunk_start() {
let mut flow = Flow::new();
flow.chunks = vec![Chunk(4, 6), Chunk(8, 10)];
flow.merge_chunk(Chunk(0, 2));
assert_eq!(flow.chunks, vec![Chunk(0, 2), Chunk(4, 6), Chunk(8, 10)]);
}
#[test]
fn core_merge_chunk_end() {
let mut flow = Flow::new();
flow.chunks = vec![Chunk(4, 6), Chunk(8, 10)];
flow.merge_chunk(Chunk(11, 15));
assert_eq!(flow.chunks, vec![Chunk(4, 6), Chunk(8, 10), Chunk(11, 15)]);
}
}