retina_core/protocols/stream/quic/
crypto.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
// crypto.rs contains the cryptograpic functions needed to derive QUIC
// initial keys. These keys can be used to remove header protection and
// decrypt QUIC initial packets. This file is heavily based on Cloudflare's
// crypto module in their Rust implementation of QUIC, known as Quiche.
// Therefore, the original license from https://github.com/cloudflare/quiche/blob/master/quiche/src/crypto/mod.rs is below:

// Copyright (C) 2018-2019, Cloudflare, Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright notice,
//       this list of conditions and the following disclaimer.
//
//     * Redistributions in binary form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in the
//       documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

use aes_gcm::{
    aead::{AeadMutInPlace, KeyInit},
    Aes128Gcm, Nonce, Tag,
};
use ring::aead;
use ring::hkdf;
use serde::Serialize;

use crate::protocols::stream::quic::parser::QuicVersion;
use crate::protocols::stream::quic::QuicError;

// The algorithm enum defines the available
// cryptographic algorithms used to secure
// QUIC packets.
#[derive(Copy, Clone, Debug, Serialize)]
pub enum Algorithm {
    AES128GCM,
}

impl Algorithm {
    fn get_ring_hp(self) -> &'static aead::quic::Algorithm {
        match self {
            Algorithm::AES128GCM => &aead::quic::AES_128,
        }
    }

    fn get_ring_digest(self) -> hkdf::Algorithm {
        match self {
            Algorithm::AES128GCM => hkdf::HKDF_SHA256,
        }
    }

    pub fn key_len(self) -> usize {
        match self {
            Algorithm::AES128GCM => 16,
        }
    }

    pub fn tag_len(self) -> usize {
        match self {
            Algorithm::AES128GCM => 16,
        }
    }

    pub fn nonce_len(self) -> usize {
        match self {
            Algorithm::AES128GCM => 12,
        }
    }
}

// The Open struct gives a return value
// that contains all of the components
// needed for HP removal and decryption
#[derive(Serialize)]
pub struct Open {
    alg: Algorithm,

    initial_key: Vec<u8>,

    #[serde(skip_serializing)]
    hp_key: aead::quic::HeaderProtectionKey,

    iv: Vec<u8>,
}

impl Open {
    pub fn new(alg: Algorithm, key: &[u8], iv: &[u8], hp_key: &[u8]) -> Result<Open, QuicError> {
        Ok(Open {
            alg,

            initial_key: key.to_vec(),

            hp_key: aead::quic::HeaderProtectionKey::new(alg.get_ring_hp(), hp_key)
                .map_err(|_| QuicError::CryptoFail)?,

            iv: iv.to_vec(),
        })
    }

    pub fn open_with_u64_counter(
        &self,
        counter: u64,
        ad: &[u8],
        buf: &mut [u8],
        tag: &[u8],
    ) -> Result<Vec<u8>, QuicError> {
        let mut cipher = match self.alg {
            Algorithm::AES128GCM => {
                let res = Aes128Gcm::new_from_slice(&self.initial_key);
                if res.is_err() {
                    return Err(QuicError::CryptoFail);
                }
                res.unwrap()
            }
        };
        let rc = cipher.decrypt_in_place_detached(
            &Nonce::clone_from_slice(&make_nonce(&self.iv, counter)),
            ad,
            buf,
            &Tag::clone_from_slice(tag),
        );

        if rc.is_err() {
            return Err(QuicError::CryptoFail);
        }

        Ok(buf.to_vec())
    }

    pub fn new_mask(&self, sample: &[u8]) -> Result<[u8; 5], QuicError> {
        let mask = self
            .hp_key
            .new_mask(sample)
            .map_err(|_| QuicError::CryptoFail)?;

        Ok(mask)
    }

    pub fn alg(&self) -> Algorithm {
        self.alg
    }

    pub fn sample_len(&self) -> usize {
        self.hp_key.algorithm().sample_len()
    }
}
impl std::fmt::Debug for Open {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("Point")
            .field("alg", &self.alg)
            .field("iv", &self.iv)
            .finish()
    }
}

pub fn calc_init_keys(cid: &[u8], version: u32) -> Result<[Open; 2], QuicError> {
    let aead = Algorithm::AES128GCM;
    let key_len = aead.key_len();
    let nonce_len = aead.nonce_len();
    let initial_secret = derive_initial_secret(cid, version);

    let mut secret = [0; 32];
    let mut client_key = vec![0; key_len];
    let mut client_iv = vec![0; nonce_len];
    let mut client_hp_key = vec![0; key_len];

    derive_client_initial_secret(&initial_secret, &mut secret)?;
    derive_pkt_key(aead, &secret, &mut client_key)?;
    derive_pkt_iv(aead, &secret, &mut client_iv)?;
    derive_hdr_key(aead, &secret, &mut client_hp_key)?;

    // Server.
    let mut server_key = vec![0; key_len];
    let mut server_iv = vec![0; nonce_len];
    let mut server_hp_key = vec![0; key_len];

    derive_server_initial_secret(&initial_secret, &mut secret)?;
    derive_pkt_key(aead, &secret, &mut server_key)?;
    derive_pkt_iv(aead, &secret, &mut server_iv)?;
    derive_hdr_key(aead, &secret, &mut server_hp_key)?;

    Ok([
        Open::new(aead, &client_key, &client_iv, &client_hp_key)?,
        Open::new(aead, &server_key, &server_iv, &server_hp_key)?,
    ])
}

fn derive_initial_secret(secret: &[u8], version: u32) -> hkdf::Prk {
    const INITIAL_SALT_RFC9000: [u8; 20] = [
        0x38, 0x76, 0x2c, 0xf7, 0xf5, 0x59, 0x34, 0xb3, 0x4d, 0x17, 0x9a, 0xe6, 0xa4, 0xc8, 0x0c,
        0xad, 0xcc, 0xbb, 0x7f, 0x0a,
    ];

    const INITIAL_SALT_RFC9369: [u8; 20] = [
        0x0d, 0xed, 0xe3, 0xde, 0xf7, 0x00, 0xa6, 0xdb, 0x81, 0x93, 0x81, 0xbe, 0x6e, 0x26, 0x9d,
        0xcb, 0xf9, 0xbd, 0x2e, 0xd9,
    ];

    const INITIAL_SALT_DRAFT29: [u8; 20] = [
        0xaf, 0xbf, 0xec, 0x28, 0x99, 0x93, 0xd2, 0x4c, 0x9e, 0x97, 0x86, 0xf1, 0x9c, 0x61, 0x11,
        0xe0, 0x43, 0x90, 0xa8, 0x99,
    ];

    const INITIAL_SALT_DRAFT27: [u8; 20] = [
        0xc3, 0xee, 0xf7, 0x12, 0xc7, 0x2e, 0xbb, 0x5a, 0x11, 0xa7, 0xd2, 0x43, 0x2b, 0xb4, 0x63,
        0x65, 0xbe, 0xf9, 0xf5, 0x02,
    ];

    let salt = match QuicVersion::from_u32(version) {
        QuicVersion::Rfc9000 => &INITIAL_SALT_RFC9000,
        QuicVersion::Rfc9369 => &INITIAL_SALT_RFC9369,
        QuicVersion::Draft29 => &INITIAL_SALT_DRAFT29,
        QuicVersion::Draft27 | QuicVersion::Draft28 | QuicVersion::Mvfst27 => &INITIAL_SALT_DRAFT27,
        _ => &INITIAL_SALT_RFC9000,
    };

    let salt = hkdf::Salt::new(hkdf::HKDF_SHA256, salt);
    salt.extract(secret)
}

fn derive_client_initial_secret(prk: &hkdf::Prk, out: &mut [u8]) -> Result<(), QuicError> {
    const LABEL: &[u8] = b"client in";
    hkdf_expand_label(prk, LABEL, out)
}

fn derive_server_initial_secret(prk: &hkdf::Prk, out: &mut [u8]) -> Result<(), QuicError> {
    const LABEL: &[u8] = b"server in";
    hkdf_expand_label(prk, LABEL, out)
}

pub fn derive_hdr_key(aead: Algorithm, secret: &[u8], out: &mut [u8]) -> Result<(), QuicError> {
    const LABEL: &[u8] = b"quic hp";

    let key_len = aead.key_len();

    if key_len > out.len() {
        return Err(QuicError::CryptoFail);
    }

    let secret = hkdf::Prk::new_less_safe(aead.get_ring_digest(), secret);
    hkdf_expand_label(&secret, LABEL, &mut out[..key_len])
}

pub fn derive_pkt_key(aead: Algorithm, secret: &[u8], out: &mut [u8]) -> Result<(), QuicError> {
    const LABEL: &[u8] = b"quic key";

    let key_len = aead.key_len();

    if key_len > out.len() {
        return Err(QuicError::CryptoFail);
    }

    let secret = hkdf::Prk::new_less_safe(aead.get_ring_digest(), secret);
    hkdf_expand_label(&secret, LABEL, &mut out[..key_len])
}

pub fn derive_pkt_iv(aead: Algorithm, secret: &[u8], out: &mut [u8]) -> Result<(), QuicError> {
    const LABEL: &[u8] = b"quic iv";

    let nonce_len = aead.nonce_len();

    if nonce_len > out.len() {
        return Err(QuicError::CryptoFail);
    }

    let secret = hkdf::Prk::new_less_safe(aead.get_ring_digest(), secret);
    hkdf_expand_label(&secret, LABEL, &mut out[..nonce_len])
}

fn hkdf_expand_label(prk: &hkdf::Prk, label: &[u8], out: &mut [u8]) -> Result<(), QuicError> {
    const LABEL_PREFIX: &[u8] = b"tls13 ";

    let out_len = (out.len() as u16).to_be_bytes();
    let label_len = (LABEL_PREFIX.len() + label.len()) as u8;

    let info = [&out_len, &[label_len][..], LABEL_PREFIX, label, &[0][..]];

    prk.expand(&info, ArbitraryOutputLen(out.len()))
        .map_err(|_| QuicError::CryptoFail)?
        .fill(out)
        .map_err(|_| QuicError::CryptoFail)?;

    Ok(())
}

fn make_nonce(iv: &[u8], counter: u64) -> [u8; aead::NONCE_LEN] {
    let mut nonce = [0; aead::NONCE_LEN];
    nonce.copy_from_slice(iv);

    // XOR the last bytes of the IV with the counter. This is equivalent to
    // left-padding the counter with zero bytes.
    for (a, b) in nonce[4..].iter_mut().zip(counter.to_be_bytes().iter()) {
        *a ^= b;
    }

    nonce
}

// The ring HKDF expand() API does not accept an arbitrary output length, so we
// need to hide the `usize` length as part of a type that implements the trait
// `ring::hkdf::KeyType` in order to trick ring into accepting it.
struct ArbitraryOutputLen(usize);

impl hkdf::KeyType for ArbitraryOutputLen {
    fn len(&self) -> usize {
        self.0
    }
}